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The effect of chemical reactions in the gas phase on unsteady heat and mass 

transfer in the neighborhood of the leading stagnation point of a streamlined 
body is investigated using the qualitative theory of dynamic systems. The 
necessary and sufficient conditions of uniqueness and stability of steady heat 
and mass transfer modes are formulated. 

Processes of combustion and thermochemical disintegration of many gasifiable and 
volatile condensed substances occur in two stages Cl-3 1, the first of which is gasifica- 

tion with formation of intermediate gaseous chemically active products which in the 
second stage enter into gas phase chemical reactions. This is accompanied by intens- 
ive injection of gaseous products of thermochemical disintegration of the streamlined 
body surface. 

Solution of the problem of intensive injection was investigated in [4 - S] of which 

[4,5] dealt with equations of the chemically frozen boundary layer, while [S] dealt 
with that of the chemically unstable one. In all of these papers the problem was 
treated in the steady formulation. 

The aim of this paper is to provide a method for the approximate analytical investi- 

gation of the effect of gas phase reactions on the stability of steady heat and mass 
transfer modes and to obtain conditions of existence, uniqueness, and stability of steady 

solutions of the related boundary value problem. 

1 Statement o f t h e p r o b 1 e rn, The flow of heated gas in the 
neighborhood of the leading stagnation point of a gasifying body of revolution is consid- 

ered. The chemically active gasification products Ag drawn in by the gas stream 
take part in the gas phase reaction in the body surface neighborhood, i. e. the chemic- 
al transformations run according to the scheme 

A $6 ‘A,SB (1.11 

where As is the initial condensed substance, B are the products of the gas phase 
reaction, and subscripts s and g denote the substance in the condensed and gaseous 
state, respectively. The gasification process is understood here in the meaning given 

to it in [7]. Evaporation and sublimation may be considered to be particular cases of 

that process. 
The scheme (1.1) implies that both stages of thermochemical disintegration may 

be reversible. We assume below that if gasification (gas phase reaction) is endother- 
mic, such as for example, sublimation (dissociation), it is reversible, and if it is 
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Unsteady heat and mass transfer modes 1157 

exotermic, then it is irreversible. 
It should be pointed out that for simplicity of subsequent exposition the kinetic 

scheme definition in the form (1.1) is based on the assumption that A, is a gas of 
identical composition to that of the initial substance, as is the case of sublimation and 
evaporation of some condensed substances [l, 71. If the gasification results in format- 
ion of several products of which only part participate in the gas phase reaction, scheme 

(1.1) is generally not valid. If, however, it is assumed that the gasification rate is 
restricted by any one of the intermediate components, and it is taken into account that 
the mass rate of that component formation due to the gasification reaction differs only 
by a constant factor from the gasification mass rate, the obtained below results can be 

extended to the case when A, is not of identical chemical composition, as exampli- 
fied by the gasification of gunpowder [2]. 

It is assumed that a strong injection of gasification products takes place, and that 
the known two-zone pattern of flow around the reacting body takes place. In that 
pattern the effect of viscous forces close to the body is negligibly small, and the bound- 

ary layer is separated from the body and formed in the neighborhood of the contact 
discontinuity that separates regions of inner and outer flows. The rate of the gas phase 
reaction is assumed to depend only on the temperature and concentration of the single 
restricting component of the gaseous mixture. The conditions of existence, uniqueness, 
and stability of steady modes of heat and mass transfer in the boundary layer are to be 

determined. 

The problem thus formulated reduces to the determination of conditions of exist- 
ence, uniqueness, and stability of steady solutions of the following boundary value 
problem expressed in dimensionless form: 

f” + ff” = fir [(fy - +], 

+- 0” + fS’ = + [$ - + n,n6R2 (C, O)] 

-& C" + fC' = +-[$ + nbRa (C, 43)] 

i?$+y~~+‘&$L 2 
s d 

(1.2) 

(1.3) 

(1.4) 

flo=o=fw=- ;5+ -$ (-g)qzo = 0 

t 
Z=- 

t _ 2Y*2P,cpe. ?+‘a? El - 
t*’ * he ’ y* = p,& I 911 kl ex* RT* 
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Here and above z and yi are the dimensionless time and coordinate; 5 and 
rl are Dorodnitsyn’s variables in Lees’s form; f and 8 are dimensionless functions 

of current and temperature: C is the mass concentration of the restricting component; 

RI and R, are dimensionless rates of gasification and gas phase reactions, respect- 

ively; a,, apt #4 yt Dam, it, a, %P, m, %, as, Ke, L, Pr, SC, f&l 3% 
are dimensionless parameters; x and y are coordinates of an orthogonal system attach- 

ed to the separation boundary of media; r is the mean curvature radius of the body; 
n and U are gas velocity components; p is the density; cp is the specific heat 

at constant pressure; p is the dynamic viscosity; M is the molecular weight of the 
gas mixture; T is the temperature; D is the effective coefficient of diffusion; h 
is the thermal conductivity coefficient; E,, ql, k,, E,, q2, and kz are, respectiv- 
ely, the activation energy, the heat effect and preexponent of gasification reaction 

and of gas phase reaction; E is the blackness coefficient; CT is the Stefan-Boltzmann 
constant; R is the universal gas constant; the prime denotes differentiation with resp- 

ect to 7, and indices S, H, e, w, and 8 denote.parameters of the gas phase, of 
the condensed phase at YS -+ 00, of the gas phase on the outer side of the boundary 

layer, parameters at the media interface, and characteristic quantities, respectively. 

Equations (1.2) which define the heat and mass transfer in the gas phase in the 

neighborhood of the leading stagnation point of the solid body were derived on the 

assumption that the gas is optically clear, that the Prandtl and Schmidt numbers and 

the product of density into viscosity are constant, the gas mixture is in effect binary 
[S], and that the specific heats of various components are constant and equal. As in 

[Q - 111, it was also assumed that the equations of continuity and motion are quasi- 
stationary. It was shown in [12] that this assumption can be taken as justified for a 

fairly wide range of flow parameter variation. 
The terms which define energy and mass transfer induced by heat conduction and 

diffusion were left in (1.4) in the formulas for energy and mass at the media interface, 
since according to [6] the temperature and concentration gradients at that interphase 
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are nonzero in the presence of gas phase reaction. 
Since we aim here at a qualitative investigation of heat and mass transfer modes, 

we need not to specify initial conditions. 

If radiation can be neglected, the streamlined body surface does not disintegrate 
(R, = 0) and remains at constant temperature T, s while a constant intensive 

injection of reactive gas occurs through the body surface. This injection induces in 
the boundary layer a none~i~b~um exotermic chemical reaction in which components 

of the external oncoming stream and of the injection stream take part. Because of this 
the boundary problem (1.2) - ( 1.4) is simplified and assumes the form 

f” + ff” = fir [(fry - +] ) L$ = T J$L 
-$T"-t_fT'=c~~ - C&m (C, T) s F (q, z) 

+q- fC'= cl+ + Cxm (C, T) zs CD (q, r) 

(1.5) 

(1.6) 

(1.7) 

q=o: f=fw= const, f’ = 0, T = T, = cod, c = C, = (1.8) 
const 

r/+co:f’--+1,T41,C+C, (1.9) 

1 T-&, - zp’-+ 
G = (Q* 7 t, = K --f---, cp+ 

e P e 

where T is the relative temperature; m is the ~rne~onl~ gas phase reaction rate; 
F and @ are dimensionless functions; C, and C, are the first and second 

Damkshler dimensionless numbers of the gas phase reaction; n and K are the order 
and the coefficient of gas phase reaction rate at T = T,, and the remaining notat- 
ion was defined above. 

The number of dimensionless criteria of similarity has been reduced in the formula- 
tion of the boundary value problem (1.5) - (1.9) by the use of new characteristic quant- 

ities. 

2. Reduction of the boundary value problem (1.5) 
-(l.g)to a dynamic system. Letusfirstconsidertheflowaround a 
nondisintegrating thermostat at intensive injection. It was shown in [4 - 63 that under 

intensive injections the flow in the boundary layer can be divided in two regions: an 
inner one 0 < q < A (q = A is the coordinate of contact surface at which f = 0) 
i n which the terms that define in Eqs. (1.5) - (1.7) the molecular transfer become 
unimportant, and the outer region A < q < c<? in which a fundamental change of 

boundary layer characteristics takes place. We shall consider Bqs. (1.5) - (1.7) in 

regions 0 < q < A and A ;( q <CCJ separately and stipulate the continuity of 
functions f, ?;, and c and their derivatives with respect to q at the interface of 

these two regions. 
Integrating twice Eqs. (1.6) and (1.7) with respect to ‘IJ in region A < 7 < 00 

using conditions (1.9) and obtaining an asymptotic estimate of the improper integrals 
as in [lo], we obtain 
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fa’ (1 - 3%) - F(A, z) = v+ g #y*, (2.1) 

fa’(&--Cc+-@(A,+ 1/.&v*, v = + 

where the subscript A relates to parameters for q = A . 
According to [4 - 61 the quantities f”‘, T”, C” are negligibly small for intens- 

ive injections in the neighborhood of q = 0 , hence for 0 < q < A it is 
possible to consider that approximatley 

f = flli + f” (0) +, T- = T, + Aq, C = C, + By (2.2) 

( PlP, 
f” (0) = - fwp, 

> 

where A and B are functions of time. The expression for f”(0) was obtained from 
Eq. (1.5) for q = 0 and boundary conditions (1.8). From (2.2) and conditions of 
joining at the contact surface we obtain 

f&l= +&A, Ua = “;%A, vA= ‘A;‘* = B (2.3) 

A=-f, ++a 
1/ 1 B 

The contact surface coordinates q = A calculated by the last of formulas (2.3) 
are the same as those calculated in [5] by the formula for q = A , if the blunting is 

spherical (pi = ‘/a), and when it is cylindrical (/& = 1) these coordinates differ 

by 8%. 
The substitution of(2.3) and the expressions for F (6, z), and CD (A, z) into 

(2.1) yields the following second order dynamic system (see the definition in [133): 

dCA -=- (2.4) 
d% mA++- 1 [a(Ce - CA) - L’/ab (CA - C,)] = P (CA, TA) 

dTA 
- =&ah+ 

dz 
-& [a (1 - TA) - b (TA - T,)] = Q (CA, TA) 

U= 281 +>O, b= 
c-fr,, 

g>o, mA z m (CA, TA) 
lo 

If the chemical reaction is a first order irreversible one that conforms to the 
Arrhenius law, then functions ?nA and parameter K are of the form 

If the reaction is a reversible recombination reaction of air atoms, then according 
to [14] we have 

mA= 
CA2 - CiE 

ris(l+ CA) ’ 
CAE=CE(TA)=CBexp[C,(l -+)] (2.6) 
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where ca is a constant and the subscript E relates to atom concentration in the 
e~i~b~urn state, In this case fi: = 2R1T,-1*s and c, = Klp,2T,-9*6R-Bb,“1 
where Kr is the constant of the recombination rate and pt is the pressure at infinity 
of the oncoming stream. 

The qualitative analysis of the boundary value problem (1.5) - (1.9) thus reduces 
to the qualitative analysis of the dynamic system (2.4) which can be effected by the 
methods expounded in [13]. 

3. Analysis of the dynamic system (2.4) and phy- 
sical interpretation of results, Onthes~engthof~edefinition 
of CA and TA the analysis can be restricted to the region of the phase plane CA, 

TA of system (2.4), determined by the inequalities 0 < CA < 1, 0 < Ta < 00. 
Function mu is assumed continuous in that region and to satisfy the conditions 

2> 0, Ji%AEnzA = 0, :A:_ ??&A = N < 00 (3.1) 

A 

The first of these means that the chemical reaction has a positive order, the second 

indicates that in the equilibrium state the chemical reaction rate is zero (in the case 

of irreversible reaction CAE = 0), and the last condition implies the boundedness of 

the chemical reaction rate. It is obvious that, if function mh satisfies JZqs. (2.5) 

and (2.6), conditions (3.1) are alsosatisfied. 
The coordinates CA0 and TAO of the equilibrium state of the dynamic system 

(2.4) are obtained from the system of equations P (CA’, ii’s”) = 0, and Q (CA’, TA? 
= 0, which reduces to the form 

CA0 = 
aC, + L%G, 

+- 
a($--TAO)-b(TA"-Tw) (3.2) 

a + L’“b C2 (a + L”‘b) 

c&$?zA” = Q (TAO - i) + b (TAO - Tw), mA” = m (cA’(TA’)t TA”) 

The number of equilibrium states is equal to the number of roots of the second of 
Eqs. (3.2), and the stability and type of equilibrium states is determined by the signs 

of the following quantities: 

ap aQ --- 
8TA acA ’ 

calculated for CA = CA” and TA = T&O. For the dynamic system (2.4) these 

quantities are 

CT1 = C amA b + (L’/’ + 1) b amA (3.3) 
sTJy-- 

-- 
Cl =A 

a+b &=--_ 
a -/- L’j*b 

C 6mA a + L’isb amA 

Cl 

-- 
a+b a dT, 

-- 
Cl 3CA 
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D 
%mA amA 

1' -4c*------=- 
c3CA aT, 

The analysis of relations (3.3) discloses important properties of system (2.4). 
all equilibrium states of system (2.4) are stable nodes 

and, according to Bendixon’s criterion, limit cycles 

2. if &?%A / @%A > 0, then for L > 1 all antisaddle points (A, > 0) 
are stable (ur < 0), and for L < 1 existence of unstable antisaddle points (A, > 
0, (TV > 0) is possible. 

On the strength of (3.3) the equilibrium state of the dynamic system (2.4) is an 
unstable antisaddle, if for cd = CA” and PA 1 !?AO the condition 

a+ b C amAo 

a -+ L’j’b rac,o +a+b 

is satisfied. The double inequality (3.4) can be satisfied only when 

a3 - al 5-2 
(1 -LfJ”‘fb c amAo 

a + L’lnb l_ - (a + L%b)> 0 (3.5) 

which can only be satisfied for L < 1. If L > 1, then a3 < ai and the in- 
equality A1 > 0 leads to the condition err < 0. 

3. If &#$A / ETA > 0 and L < 1, then (3.4) is the necessary and sufficient 
condition of existence of unstable antisaddle points, while the necessary condition of 
their existence is, by virtue of (3.5), of the form 

(3.6) 

T h e o I e m 3.1. If function mu satisfies conditions (3. l), where CACIE z 0, 
the following statements are valid: 

1) the dynamic system (2.4) has an odd number of simple equilibrium states (Al 

# 0) inside region G1 determined by the inequalities 0 < CA < c,n,, and 
TInin < $?A < T,, where CmaY is the maximum of values C, and c,; Tmill 

is the ~nimum of values of T, and T, zn 1, and T, is a reasonably large 

quantity that exceeds T, and 1, with the number of saddle points (A, < 0) is 

smaller by one than the number of antisaddle points (A, > 0); 
2) The criterion of uniqueness of equilibrium state is of the form 

P r o o f. It follows from (2.4) and (3.1) that nowhere outside region G, fimct- 
ions P and Q vanish, hence all equilibrium states of the dynamic system (2.4) lie 
within region G, . Moreover, (2.4) and (3.1) imply the validity of inequalities 
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P (0, TA) > 0, p (GIlax, TA) < 0, Q (CA, Twin) > 0, Q (CA, Tm) < 0 

Thus the rectangle bounding region G1 contains all equilibrium states of the 

dynamic’system (2.4) and is intersected by its phase trajectories entering it from out- 
side (arrows in Fig. 1 indicate the direction of phase trajectories). In conformity with 
the Poincarg index theory [13] this implies the validity of the first statement of the 
theorem. 

The second statement of the theorem follows from that in accordance with the first 
statement the dynamic system (2.4) has a saddle point then and only then when there 

Fig. 1 

Tw 
0 

CEW c,c, 
Fig. 2 

exist several equilibrium states, while a unique equilibrium state occurs when condit- 
ion A1 > 0 is satisfied for CA = C&O and 7~ = TAO . On the strength of 
(3.3) and (3.4) the last condition implies condition (3.7). The theorem is proved. 

Theorem 3. 2. If %<I, C,<C,, and function mA satisfies condit- 

ions (3. l), where CAE = CE (TA) is a positive monotonically increasing funct- 

ion such that CE (TW) = CEw < 1, and CE (1) = C, (the curve of function 
CE (?A) is shown diagrammatically in Fig. 2), then inside region Cs defined by the 

inequalities CE~ < CA < C, and T, < TA < ‘I exists an odd number of 
simple equilibrium states of the dynamic system (2.4) with the number of saddle points 
smaller by one than the number of antisaddle points, and condition (3.7) is the criter- 
ion of uniqueness of equilibrium states. 

P r o o f. Region G2 is divided by the curve CA = CE (T,) in two subregions 

(see Fig. 2): the upper one in which C,E < CA < CAE and by virtue of conditions 

(3.1) ma < 0 , and the lower in which CAE < CA < C, and mA > 0. 
Taking this into account and using Eqs. (2.4), on the strength of conditions of the 
theorem we obtain that P (Cw~, TA) > 0 for TA > T,, P (C,, FA) < 0 
for T < i, Q (CA, T,) > 0 for CA > Clan, and Q (CA, 1) < 0 for 
CA < C,. Hence the rectangle C, is intersected by phase trajectories of the dynamic 

system (2.4) entering it from outside. In accordance with the Poincark index theory 

the region contains an odd number of simple equilibrium states in which the number 
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of saddle points is smaller by one than the number of antisaddle points (A, > 0). 
Hence in accordance with (3.3) and (3.4) condition (3. ‘7) is the criterion of uniqueness 

of equilibrium states inside region Gs . The theorem is proved. 
Corollaries. I.“. If function mais determined by formula (2.5), then by 

Theorem 3.1 all equilibrium states of the dynamic system (2.4) lie inside region Gr, 
and their uniqueness criterion (3.7) is of the form 

Since (3.2) implies that 

lim CA” = Ci, 
a-f-b?, 

hence in limit cases of a chemical reaction process when C, + 0 and Cl + co 
the uniqueness criterion (3.8) is satisfied and the dynamic system (2.4) has a single 
antisaddle point. Violation of condition (3.8) occurs only at intermediate values of 
the first Damkiihler number C% : 0 < Cl,l <C, < C,,, < 00, if parameter H = 

EC&, > 1. Bifurcation values C,,, and C,$, of parameter c, are deter- 
mined by the equation as = as, if the values of remaining parameters are fixed. 

If in the considered case L > i or L < i and cr < cr’ (see formula 

(3.6)), the antisaddle points of the dynamic system are stable. For L < ‘l and 
c’s > cl* the loss of antisaddle points stability and existence of unstable antisaddle 
points are possible when condition (3.4) is satisfied. In that case the loss of stability 
of the antisaddle point is accompanied by the generation of a stable limit cycle 1131. 

2”. If Flu < 1, cl0 < c,, and function rn~ satisfies Eq. (2.6) in which cs 

> 1.75 (according to [14] C3 = 4.022), the dynamic system has in region Gz 
a unique equilibrium state, viz. a stable node, and there are no limit cycles in that 

region. 
In fact, for C, > 1.75 we have t~oughout the region 

dmA _ 3.5 
-=- (f:‘(1+ cA) 

1.7;; --1 

1 1 CAE <o 
A 

Thus by virtue of Theorem 3.2, formulas (3.3). and conditions (3.7) imply that 
a unique equi~b~um state, a stable node, exists in region G, in which according 
to Bendixon’s criterion there are no limit cycles [W]. 

The above analysis shows the existence, uniqueness, and stability of the stationary 

mode and the absence of oscillating and self-oscillating heat and mass transfer modes 
in the case of flow past the leading point of a cold thermostat of dissociated air in the 
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presence of intensive injection of an inert gas. 
This conclusion is in agreement with the conclusion about the uniqueness of the 

mode of steady heat exchange between the thermostat leading point and the dissociat- 
ed air stream arrived at in [15] on the basis of physical considerations, as well as with 
the numerical calculation results in [P]. 

The results presented in Sect. 4 according to which the dynamic system (2.4) in 
the case of Arrhenius dependence of reaction rate on temperature has for L = 1, H 

> 1 , and Cl,l<C,<C,,, several equilibrium states, is in agreement with the 
results in [16,17], where the numerical analysis of thermal interaction between the 
combustible mixture and an inert thermostat for L = i and H > 1 (H = 432.7) 
in the absence of injection (t,,, = 0), as well as with injection of inert gas (f,,, = 
-0.15, - 0.3,and -0.5) had shown the existence of two first Damkahler numbers 
which define the region of existence of three stationary solutions of the system of 
conservation equations. It was shown in [X,17 J that the cdtcial valne of parameter 

Cl corresponds to ignition and combustion extinction of mixture. 

4. Reduction of the conjugate boundary value 
problem (1.. 2)- i[l, 4) to a dynamic system, Letusconsider 
the case when gasification of a steamlined body with a spherically blunt nose (fir e= 
l/s) results in intensive injection of a chemically active gas. Double integration of Eq. 
(1.3) with respect to y, with allowance for the first four boundary conditions (1.4) 
yields 

(4.11 

Substitution into the fint of boundary conditions (1.4) of the expression for (89 1 
a~&, derived from the third of Eqs. (1.2) in which in conformity with [4 - 6 1 we 

can sdt 8’ = 0 when 11 = 0 and the expressions (4.1) in which the improper in- 
tegral has been calculated by the method described in [lo], yields the equation 

(4.2) 

yacp& {@I - ‘trc, (8, + %)I %Rr + 
%J I(1 + f-e?)’ - (I+ ww)'ln 

9x=~l(ew)=+. ~a=9a(cw3w~=+f- 
w 

The second equation is obtained from the second of conditions (1.4) by substitut- 
ing in the latter the quantity (ac / 8’t~)~ obtained from the fourth of Eqs. (1.2) 
written for q = 0 in conformity with results in [4 - 6) 

lit l--c 
2 = pz (c,, e.) dr = - 316% + Y%w&’ + (4.3) 
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5. Analysis of the dynamic system (4. 2),(4. 3)and 
physical interpretation o f r e s u 1 t s . On physical considerations 
it is possible to restrict the analysis of the dynamic system (4.2) - (4.3) to that part 

of the phase plane Cw, O,, which satisfies the following conditions: 

0 < c, < 1,o < 1 + WlU < co? R, (ClW 0,) > 0 (5.1) 

which are implied by the definition of P, c,, and 0, and from the assumption of 

strong injection. By virtue of the definition of functions ‘pi, ‘pa, R,, and &!a the 

following conditions are satisfied: 

(5. a 

For simplicity we can assume ‘pi = v(l + g@,) / (1 + fBw) , The de- 
pendence (pa = i& (C,,, 0,) is determined in conformity with (1.2). All paramet- 
ers in Eqs. (4.2) and (4.3) are real and positive, except a, and a2 which for ex- 
othermic and endothermic reactions are, respectively, equal plus and minus unity. 

T h e o r e m 5 . 1. If conditions 

(5.3) 

are satisfied, then the following statements are valid: 
1) the dynamic system (4.2), (4.3) has in the considered region (3.1) of the phase 

plane an odd number of simple equilibrium states with the number of saddle points 
smaller by one than the number of antisaddle points (nodes and focuses); 

2) if all antisaddle points are unstable, at least one stable limit cycle which con- 

tains unstable equilibrium states exists in region (3.1). 
Conditions (3.3) of the theorem have a simple physical meaning: the gas phase 

reaction is an irreversible exothermic reaction of positive order. Proof of this theorem 

is similar to that of Theorem 3.1. 
The criterion of uniqueness and stability of steady modes and the conditions of 

existence of self-oscillation modes of heat and mass transfer with mild inducement 
follows from Theorem 5.1 and the existing correspondence between the signs of 

quantities similar to CF,, A,, and L), and the properties of the equi~brium states 

of system (4.2), (4.3). It is interesting that the necessary condition of existence of 
self-oscillating modes with mild inducement, of unstable steady modes, as well as 
oscillation modes of intensive thermochemical disintegration, obtained with the use 
of the indicated criteria, is of the form 

&In($)>0 
w 

(5.4) 

When the dependence of ~ncti~s R, and 8s on 8, is exponential, condit- 

ion (5.4) assumes the form 3t~ = E, I El > 1. 

The necessary condition (5.4) of existence of the self-oscillation mode suggests a 
possible physical mechanism of these. It is apparently similar to the mechanism of 
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thermo~ne~c oscillations, which is described in [18] in connection with inv~tiga~on 
of a two-stage reaction. 

It is interesting to check conditions (5.4) on a few specific examples of thermo- 

chemical disintegration. In the case of intensive disintegration of the majority of 
heatproof (e. g. I carbon-graphite sublimating) materials, when the quantity E, is 
fairly large (E, - 170 kcal/mole), condition (5.4) is not satisfied, hence the de- 
stabi~zing effect of gas phase exotermic reactions on the process of thermochemical 
disintegration is not to be expected. A similar conclusion can be, apparently, made 
about the fast burning of ballistite H for which np: - 1. The combustion of 
volatile explosives, such as nitroglycerin and uitroglycol (for the latter X~ = 2.76 
[ZD may, on the contrary, result in the appearance of unsteady phenomena, including 
the malformation combustion into detonation. 
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